

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu INT workshop

Camilla Juul Hansen

Heidelberg University, ZAH

August 2014

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

• Telescopes and stellar spectra

- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes Abundances Applications Heavy elements 2. r-process Separating processes

VLT/UVES and LAMOST

000

Very Large Telescope (VLT) - 8-m mirror

Fig. 1.— The essential components of an astronomical spectroscol

A D > < A + D >

Simple sketch of a spectrograph -Massey et al.

Heidelberg University, ZAH

Camilla Juul Hansen

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) — 4-m mirror, 4000 fibres \to 10000 stars/night or $2\cdot10^6$ stars/year

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes	Abundances	Applications	Heavy elements	2. r-process	Yields	Meteorites	Separating processes
000							
VLT/UVES	and LAMOST						

LAMOST vs UVES spectra

LAMOST (low resolution $R \sim 1800$) and ESO VLT (UVES - high resolution $R \sim 40000$)

Important: Sr may be the only heavy element for which we will be able to derive abundances in low-resolution spectra.

Camilla Juul Hansen

Heidelberg University, ZAH

Stellar spectra – 2D to 1D

Camilla Juul Hansen

Heidelberg University, ZAH

Visual versus near-UV spectral range

Camilla Juul Hansen

Heidelberg University, ZAH

Stellar spectra and equivalent width (W)

Camilla Juul Hansen

Heidelberg University, ZAH

The importance of atomic data; Abundance - log gf relation

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (1)

Hansen et al, 2012

Since the UV-region of the spectra is crowded we have to carry out spectral synthesis on line lists with accurate atomic data.

Camilla Juul Hansen

Heidelberg University, ZAH

Stellar spectra, abundances, and [Fe/H]

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_{*} - \log(N_{Fe}/N_{H})_{\odot}$$
(2)

Top: Solar ([Fe/H] = 0) spectrum – Mg triplet. Bottom: Star with $[Fe/H] \sim -5$. Christlieb +2004

Camilla Juul Hansen

Heidelberg University, ZAH

Telescopes	Abundances	Applications	Heavy elements	2. r-process	Yields	Meteorites	Separating processes
	00000000						

Some of the most metal-poor stars! See the next talk by Terese Hansen

Heidelberg University, ZAH

Camilla Juul Hansen

Observable elements - with high-resolution instruments

Blue: ground based observations, green: space, yellow: isotopic abundances

Image: A matrix

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes Abundances	Applications	Heavy elements	2. r-process	Yields	Meteorites	Separating processes
00000000						

Lu Hf

Ta

W 74

Rc 75

Ir

Pt 78

Au 79

Pb 82

76 +0.43

-0.59 -0.72

+0.20

	EI.	2	A(X) (1)	A(X) (2)	A(X) (3)	A(X) This Work	
	Ge	32	2 43 01	100		+0.10	
	Sr	38	+0.72	100	-		
		39	-0.23		_	-0.15	
	Zr	40	+0.43	1		+0.55	
	Mo	42	-0.55	_			
	Ru	44	+0.36		Ξ	-0.11 +0.36	
Daaaya halalina atay	Rh	45	-0.42		-	-0.42	
Record holding star	Pd	46	-0.05		-	-0.09	
-	Ag	47	-0.81		-	-0.84	
- CS31082-001		56	+0.40	100			
- C331002-001	La	57	-0.60	-0.62	-		
	Ce	58	-0.31	-0.29	-	-0.31	
Abundances	Pr Nd	59 60	-0.86	-0.79	100	-0.21	
Abullualices	Sm	62	-0.13	-0.42		-0.42	
	Eu	63	-0.76	-0.72	_	-0.75	
of almost 70 elements,	Gd	64	-0.27	-0.21		-0.29	
or annost to clements,	Tb	65	-1.26	-1.01		-1.00	
	Dy	66	-0.21	-0.07	-	-0.12	
37 of which are heavy elements.	Ho	67	-	-0.80	-	1000	
of of which are nearly clements	Er	68	-0.27	-0.30		-0.31	
	Tm	69	-1.24	-1.15		-1.18	

Siqueira Mello et al. 2013

Table 1. LTE abundances in CS 31082-001 as derived from previous works, from the present paper, and our adopted final abundances.

A/N)

EL Z A(X) A(X) A(X)

Bi 83 -0.40 -0.40 ± 0.33 1.83 Th 90 -0.98 -0.98 ± 0.13 1.84 U 92 -1.92 -1.92 ± 0.17 1.68 References, (1) Hill et al. (2002), (2) Sneden et al. (2009), (3) Barbuy et al. (2011).

イロト イヨト イヨト

+0.18

+0.20

+0.30

-1.00

-0.65

-1.08

-0.73

-1.60

-0.90

-0.21

Camilla Juul Hansen

Heidelberg University, ZAH

[X/Fe]

adopted

0.73

0.53

0.84

0.97

0.90

1.45

1.18

1.15

1.16

1.03

1.38

1.33

1.69

1.61

1.64

1.62

1.67

1.64

1.66

1.47

0.92

2.45

1.46

0.89

0.25

A(X) adopted

+0.10±0.21 +0.72±0.10

 -0.19 ± 0.07

 $+0.49\pm0.08$

 -0.54 ± 0.12

 -0.11 ± 0.13

 $+0.36\pm0.12$

 -0.42 ± 0.12 -0.09 ± 0.07

-0.84±0.21

 $+0.40\pm0.14$

 -0.62 ± 0.05 -0.29 ± 0.05

-0.79±0.05

-0.15±0.05

-0.42±0.05 -0.72±0.05

-0.21±0.05

-1.01±0.05

-0.07±0.05

-0.80±0.06 -0.30±0.05

-1.15±0.05

-0.41±0.11

 -1.08 ± 0.13

-0.72±0.05

 -1.60 ± 0.23

 -0.90 ± 0.24

-0.21±0.21

 $+0.18\pm0.07$

 $+0.20\pm0.07$

 $+0.30\pm0.23$

 -1.00 ± 0.34

-0.65±0.19

* 臣

What can we learn from stellar abundances?

- HD122563 proto LEPP star
- Large

star-to-star scatter for n-capture elements (e.g. Sr and Ba)

Camilla Juul Hansen

Heidelberg University, ZAH

HD122563

Abundance star-to-star scatter and the 2nd r-process

- α elements show a very low scatter
- Sr shows a very large scatter

Camilla Juul Hansen

Heidelberg University, ZAH

Selected elements

Camilla Juul Hansen

Heidelberg University, ZAH

Telescopes 000	Abun dan ces 00000000	Heavy elements ●00		Separating processes
Correlations	;			

Sample, Method, and Formation Process:

- Sample consists of 71 stars, 42 dwarfs and 29 giants
- Enhanced as well as 'normal' stars $(-3.3 < [{\rm Fe}/{\rm H}] < -0.6)$
- UVES and HIRES (high resolution data)
- MARCS 1D atmospheres & MOOG¹ synthetic spectrum code
- Element and formation process:
- Sr 85% s-process (weak s-process/α-rich/p-rich)
- Y 92% s-process (weak s)
- Zr 83% s-process (less weak s)
- Mo 50% s-process (the remaining 50% is from r+p-process)
- Ru 30% s-process (70% weak r-process?)
- Pd 46% s-process (54% r-process some 'weak' r?)
- Ag 79% r-process ('weak' r?)
- Ba 81% main s-process (AGB stars)
- Eu 94% main r (Arlandini + 1999)

¹Sneden 73, version 2010, Assuming LTE

Heidelberg University, ZAH

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Telescopes 000	Abun dan ces 00000000	1 I I I I I I I I I I I I I I I I I I I	Heavy elements ●00		Separating processes
Correlations					

Sample, Method, and Formation Process:

- Sample consists of 71 stars, 42 dwarfs and 29 giants
- Enhanced as well as 'normal' stars (-3.3 < [Fe/H] < -0.6)
- UVES and HIRES (high resolution data)
- MARCS 1D atmospheres & MOOG¹ synthetic spectrum code
- Element and formation process:
- Sr 85% s-process (weak s-process/α-rich/p-rich)
- Y 92% s-process (weak s)
- Zr 83% s-process (less weak s)
- Mo 50% s-process (the remaining 50% is from r+p-process)
- Ru 30% s-process (70% weak r-process?)
- Pd 46% s-process (54% r-process some 'weak' r?)
- Ag 79% r-process ('weak' r?)
- Ba 81% main s-process (AGB stars)
- Eu 94% main r (Arlandini + 1999)

¹Sneden 73, version 2010, Assuming LTE

Camilla Juul Hansen

Heidelberg University. ZAH

Telescopes 000	Abun dan ces 00000000	Heavy elements 0●0		Separating processes
Correlations	5			

r- and s-process elements (Arlandini+1999)

Camilla Juul Hansen

Heidelberg University, ZAH

< 🗗

ARI ITA LSW

Telescopes 000	Abun dan ces 00000000	Heavy elements 00●		Separating processes
Correlations	;			

Correlation - Anticorrelation

If two elements are created by the same process, they most likely grow in the same way (correlate).

Elements (38 < Z < 50) are generally found to anti-correlate with

Z > 56 elements (Burris et al, 2000, Montes et al, 2007, Francois et al 2007)

Camilla Juul Hansen

Telescopes 000	Abundances 00000000	Heavy elements 000		Separating processes
Sr - Eu				

Weak s-process elements - Sr (85%) and Y (92%) $_{\rm Arlandini\ et\ al}$ 1999

Hansen et al, 2012

Camilla Juul Hansen

Heidelberg University, ZAH

Weak s-process and weak r-process/LEPP elements

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW

Main s-process and main r-process elements - Ba (81%) and Eu (94%)

Hansen et al, 2012

Camilla Juul Hansen

This is why silver is interesting:

Ag (and Pd) is produced by a second 'weak' r-process/LEPP

Heidelberg University, ZAH

< A

Camilla Juul Hansen

Telescopes 000		Heavy elements 000		Separating processes
Sr - Eu				

Mo and Ru may also be created by this 'LEPP' process

Hansen et al, 2014

Camilla Juul Hansen

Telescopes 000	Abundances 00000000	 Heavy elements 000		Separating processes
Sr - Eu				

The challenge: Deriving abundances from stars that are not enhanced in heavy elements.

High-quality observations are needed in the near-UV spectral range - almost impossible with fibre-based instruments.

Camilla Juul Hansen

Heidelberg University, ZAH

What can we learn about Mo and Ru? A more direct approach to test if two elements (A, B) correlate

Fitting the entire sample = 1 process creates it all.?

Large uncertainties and scatter found between Sr-Mo and Ag-Mo. Can this be improved by fitting two processes/contributions?

Camilla Juul Hansen

Heidelberg University, ZAH

Telescopes 000	Abundances 00000000	Heavy elements 000	2. r-process		Separating processes
Sr - Eu					

Mo – weak s or LEPP? \rightarrow *Not LEPP*

Hansen et al, 2014

Camilla Juul Hansen

Telescopes 000	Abundances 00000000	 Heavy elements 000	2. r-process Yi		Separating processes
Sr - Eu					

Heidelberg University, ZAH

< 🗇

Camilla Juul Hansen

Telescopes 000	Abundances 00000000	Heavy elements 000	2. r-process 000000000000000		Separating processes
Sr - Eu					

Ru – weak s or LEPP? \rightarrow LEPP!

Hansen et al, 2014

Camilla Juul Hansen

Telescopes 000	Abundances 00000000		2. r-process		Separating processes
Sr - Eu					

Heidelberg University, ZAH

Image: Image:

Camilla Juul Hansen

Pure r-process yields (Hansen et al, 2012)

Heidelberg University, ZAH

ARI ITA LSW

r-poor vs r-rich stars: HD122563 & CS31082-001

(Honda et al, 2006, Hill et al, 2002 & Hansen et al, 2012)

Camilla Juul Hansen

Heidelberg University, ZAH

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \to$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

▲ 伊 ▶ → 三

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \to$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

< A > < 3

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \to$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

< A > < 3

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \to$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

▲ 伊 ▶ ● ● ●

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \to$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

< /₽> < ∃>

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process)
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

Camilla Juul Hansen

lsotopic abundances needed \rightarrow presolar grains from meteorites?

Blue: ground based observations, green: space, yellow: isotopic abundances

Heidelberg University, ZAH

Camilla Juul Hansen

Presolar grains: r-,s-, and p-process contributions to Mo and Ru

(Dauphas +2004)

Element/lsotope							
Мо	92	94	95	96	97	98	100
Ru	96	98	99	100	101	102	104
Process	р	р	s + r	s	s + r	s + r	r

Presolar grains can be enriched by only one AGB star. Anomalies in abundances can therefore indicate a heterogeneous gas which in turn means that the nebula/cloud was not uniformly mixed – or general variations of x Mo due to variations in the contribution from process x to the gas....

Heidelberg University, ZAH

Anomalies - improved method!

 Telescopes
 Abundances
 Applications
 Heavy elements
 2. r-process
 Yields
 Meteorites
 Separating processes

 000
 000000000
 000
 00000000000000
 000
 000000000000
 0000000000000

 Presolar grains
 000
 000
 000
 000
 000
 000000000000

The slope of these correlations match s-process predicted slopes (for bulk meteorites). Dauphas et al. 2004

Dauphas et al therefore believe that the reason for anomalies is variations in the s-process (but cannot fully exclude r- and p-process decoupling).

Camilla Juul Hansen

Heidelberg University, ZAH

Earth

- The Mo-Ru (cosmic) correlation reflects a mixing line between pure s and Solar composition. All meteorites follow this correlation.
- The Earth also follows this cosmic correlation this is quite interesting because:
- Ru is highly siderophile and therefore sinks into the core
- Mo is moderately siderophile and will stay in the mantle (like noble metals) → The same Mo-Ru correlation for meteorites would not a priori be expected for the Earth's mantle....
- Since the Mo-Ru correlation is true for the Earth's mantle, Ru must be delivered to the mantle after the core formed by a late accretion event which was of similar composition to the gas that first enriched the mantle in Mo.

Camilla Juul Hansen

Heidelberg University, ZAH

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Earth

- The Mo-Ru (cosmic) correlation reflects a mixing line between pure s and Solar composition. All meteorites follow this correlation.
- The Earth also follows this cosmic correlation this is quite interesting because:
- Ru is highly siderophile and therefore sinks into the core
- Mo is moderately siderophile and will stay in the mantle (like noble metals) → The same Mo-Ru correlation for meteorites would not a priori be expected for the Earth's mantle....
- Since the Mo-Ru correlation is true for the Earth's mantle, Ru must be delivered to the mantle after the core formed by a late accretion event which was of similar composition to the gas that first enriched the mantle in Mo.

A D > A A > A >

s-process in grains and stars

Solid symbols are stars, open symbols SiC grains Hansen et al. 2014, Pellin et al. 2006, Nicolussi et al. 1997

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW

Conclusion

- A second process is needed to explain Ag, Ru & Pd
- This second "LEPP" is different from the s-processes and the main r-process
- Mo is produced by all processes p,s, and r this is detectable
- Mo and Ru are important heavy elements as they can trace various formation processes and thereby provide information on the formation of stars, meteorites, and Earth.
- Two processes seem sufficient to explain the stellar abundances and their scatter within the uncertainty (0.32dex) may be too large = could hide other contributions
- Room for improvement:
 - \rightarrow 3D self-consistent SN models,
 - \rightarrow optimized yield predictions,
 - \rightarrow 3D+NLTE abundance corrections for heavy elements and
 - \rightarrow mixing processes in the ISM.

Camilla Juul Hansen

Heidelberg University, ZAH

Telescopes 000	Abun dan ces 00000000			Separating processes
r/LEPP				

Material for discussion: Observational indicators for formation processes -

- 1) Correlations
- 2) star-to-star abundance scatter
- 3) Abundance pattern from observations
- 4) Uncertainties
- 5) CEMP stars

Heidelberg University, ZAH

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW

Sac

Telescopes 000	Abun dan ces 00000000			Separating processes
r/LEPP				

Observational abundance biases (Hansen et al. 2014 subm. to ApJ)

Heidelberg University, ZAH

< 🗗

Telescopes 000	Abundances 00000000			Separating processes
r/LEPP				

From this sample we eliminate stars with:

- ${\rm [Fe/H]} < -2.5$ removes most s-process contamination
- $\rm [C/Fe] < 0.9$ removes most CEMP stars
- [Ba/Fe] < 1.0 removes CEMP-s and Ba-rich binaries
- Min. 5 abundance detections (i.e., not upper limits)
- $\rm [C/N]{<}-0.4$ and $\rm [N/Fe]{>}0.5$ removes self-enriched stars

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abun dan ces 00000000	 Heavy elements 000		Separating processes 0000●0000000
r/LEPP				

Assumptions:

There are 3 robust processes:

r-process, LEPP, P-component. M1:

r=CS22892-052, LEPP=HD122563 M2: r=CS22892-052, r+LEPP = HD122563 M3: r+LEPP=CS22892-052, r+LEPP=HD122563

- all stars are mixed

Camilla Juul Hansen

Telescopes 000	Abun dan ces 00000000	Heavy elements 000		Separating processes 00000●000000
r/LEPP				

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Camilla Juul Hansen

Robustness of the processes! (Hansen et al, 2014 subm. to ApJ)

Heidelberg University, ZAH

Telescopes 000	Abundances 00000000			Separating processes
r/LEPP				

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Heidelberg University, ZAH

ARI ITA LSW

Telescopes 000	Abun dan ces 00000000	Heavy elements 000	2. r-process		Separating processes
r/LEPP					

Robustness of the r-process!

Heidelberg University, ZAH

< • • • • **•**

Telescopes 000	Abundances 00000000	Heavy elements 000		Separating processes
r/LEPP				

Two ways of deriving abundances:

- Equivalent width and synthetic spectra
- We need to know the stellar parameters: Temperature, gravity, metallicity and velocity (small scale)
- Model atmosphere (e.g. MARCS) and synthetic spectrum code (e.g. MOOG)
- Assumptions: 1D, LTE one local temperature, black body radiation (Planck), Maxwellian velocity distribution, Boltzmann and Saha describe excitation and ionisation
- Line lists with atomic and molecular information (excitation potential and log gf)

Heidelberg University, ZAH

Telescopes 000	Abundances 00000000	Heavy elements 000		Separating processes 00000000000
r/LEPP				

Temperature, gravity and metallicity

- The color of a star depends on two factors: Temperature and metallicity
- Color (V-K) calibration: $T = a + b(V - K) + c(V - K)^2 + d(V - K)[Fe/H] + \dots$
- Excitation potential based on Fe lines (NLTE sensitive)
- Parallax/distance (π): $log \frac{g}{g_{Sun}} = log \frac{M}{M_{Sun}} + 4 \frac{T}{T_{Sun}} + 0.4V_o + 2log(\pi) + corrections$
- Ionisation equilibrium from Fe lines (NLTE sensitive)
- Metallicity ([Fe/H]) from equivalent widths of Fe lines

Heidelberg University, ZAH

Camilla Juul Hansen