

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu INT workshop

Camilla Juul Hansen

Heidelberg University, ZAH

August 2014

4 0 8

Heidelberg University, ZAH

Camilla Juul Hansen Camilla Juul Hansen Heidelberg University, ZAH

- Telescopes and stellar spectra
- Stellar abundances and uncertainties ۰
- Observational indications of a 2nd process ۰
- Meteorites and presolar grains ö
- Disentangling the primary processes ۰

Camilla Juul Hansen

• Telescopes and stellar spectra

- Stellar abundances and uncertainties ۰
- Observational indications of a 2nd process ۰
- Meteorites and presolar grains \bullet
- Disentangling the primary processes ۰

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process ۰
- Meteorites and presolar grains ۰
- Disentangling the primary processes ۰

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process \bullet
- Meteorites and presolar grains \bullet
- Disentangling the primary processes ۰

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes ۰

Heidelberg University, ZAH

Camilla Juul Hansen

- Telescopes and stellar spectra
- Stellar abundances and uncertainties
- Observational indications of a 2nd process
- Meteorites and presolar grains
- Disentangling the primary processes

Camilla Juul Hansen

Telescopes Abundances **Applications** Heavy elements 2. r-process Yields Meteorites Separating processes 00000000 $\overline{\circ}$ 000000000000 \bullet 00 000 0000000 VLT/UVES and LAMOST

Very Large Telescope (VLT) - 8-m mirror

For 1 ... The americal commenceds of an automorphism meetingstand

4. 0. 3. x 一句

Simple sketch of a spectrograph -Massey et al.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes Applications Heavy elements 2. r-process Yields Meteorites Abundances Separating processes 00000000 000000000000 000 $\circ \bullet \circ$ 000 0000000 00000000000 000 **VLT/UVES and LAMOST**

Large Sky Area Multi-Object Fiber Spectroscopic Telescope $(LAMOST)$ - 4-m mirror, 4000 fibres $\rightarrow 10000$ stars/night or $2\cdot 10^6$ stars/year

4 0 8

Heidelberg University, ZAH

Camilla Juul Hansen

LAMOST vs UVES spectra

LAMOST (low resolution $R \sim 1800$) and ESO VLT (UVES - high resolution $R \sim 40000$)

Important: Sr may be the only heavy element for which we will be able to derive abundances in low-resolution spectra.

Heidelberg University, ZAH

Camilla Juul Hansen

Stellar spectra - 2D to 1D

Camilla Juul Hansen

Visual versus near-UV spectral range

 290

Stellar spectra and equivalent width (W)

Camilla Juul Hansen

Telescopes Abundances Applications Heavy elements 2. r-process Yields Meteorites Separating processes <u>opes Abooode oor ations acordoodedoor oor acococo oor acococococo</u> 000 0000000

The importan
e of atomi data; Abundan
e - log gf relation

$$
\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta \chi - \log(\kappa)
$$
 (1)

Hansen et al, 2012

Since the UV-region of the spectra is crowded we have to carry out spectral synthesis on line lists with accurate atomic data.

Camilla Juul Hansen

Heidelberg University, ZAH Camilla Juul Hansen Heidelberg University, ZAH

Telescopes Abundances Applications Heavy elements 2. r-process Yields Meteorites Separating processes [Teles
opes](#page-7-0) [Abundan
es](#page-10-0) [Appli
ations](#page-18-0) Heavy [elements](#page-21-0) 2. [r-pro
ess](#page-25-0) [Yields](#page-37-0) [Meteorites](#page-45-0) [Separating](#page-53-0) pro
esses

Stellar spectra, abundances, and [Fe/H]

$$
[Fe/H] \equiv \log(N_{\text{Fe}}/N_{\text{H}})_{*} - \log(N_{\text{Fe}}/N_{\text{H}})_{\odot} \tag{2}
$$

Top: Solar ($[Fe/H] = 0$) spectrum - Mg triplet. Bottom: Star with $[Fe/H] \sim -5$. Christlieb +2004

 \leftarrow \Box

A

ARI ITA LSW 290

Heidelberg University, ZAH

Camilla Juul Hansen

Some of the most metal-poor stars! See the next talk by Terese Hansen

Camilla Juul Hansen

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Heidelberg University, ZAH

Observable elements - with high-resolution instruments

◆ ロ ▶ → イ 印

Blue: ground based observations, green: space, yellow: isotopic abundances

Heidelberg University, ZAH

Camilla Juul Hansen

Table 1. LTE abundances in CS 31082-001 as derived from previous works, from the present paper, and our adopted final abundances.

 $[XFe]$

adopted

 -0.55

0.73

0.53

0.84

0.97

0.90

1.45 1.39

1.18

 1.15

1.16

 1.17 1.03

1.38

 1.33

1.51

1.69

1.61

1.64

 1.73

Heidelberg University, ZAH

References. (1) Hill et al. (2002), (2) Sneden et al. (2009), (3) Barbuy et al. (2011). **K ロ ト K 伊 ト K**

重きす 活 Þ ă

Camilla Juul Hansen

Telescopes [Teles
opes](#page-7-0) [Abundan
es](#page-10-0) [Appli
ations](#page-18-0) Heavy [elements](#page-21-0) 2. [r-pro
ess](#page-25-0) [Yields](#page-37-0) [Meteorites](#page-45-0) [Separating](#page-53-0) pro
esses Abundances Heavy elements 2. r-process Yields Meteorites Separating processes 000

What can we learn from stellar abundances?

- HD122563 proto LEPP star
- Large star-to-star scatter for n-capture elements (e.g. Sr and Ba)

Camilla Juul Hansen

Heidelberg University, ZAH

HD122563

Gionts Dwarfs

 $\overline{1}$

Abundance star-to-star scatter and the 2nd r-process Abundan
e star-to-star s
atter and the 2nd r-pro
ess

- \bullet α elements
	- show a very low state of the state of th
- Sr shows a very large scatter Sr shows a very large s
atter

Heidelberg University, ZAH

ARI ITA LSW 299

Camilla Juul Hansen

Selected elements

Camilla Juul Hansen

Heidelberg University, ZAH

Sample, Method, and Formation Process:

- Sample consists of 71 stars, 42 dwarfs and 29 giants
- Enhanced as well as 'normal' stars $(-3.3 <$ [Fe/H] < -0.6)
- UVES and HIRES (high resolution data)
- MARCS 1D atmospheres & MOOG¹ synthetic spectrum code
- Element and formation process:
- Sr 85% s-process (weak s-process/ α -rich/p-rich)
- Y 92% s-process (weak s)
- Zr 83% s-process (less weak s)
- Mo 50% s-process (the remaining 50% is from $r+p$ -process)

∢ ロ ≯ (伊)

- Ru 30% s-process (70% weak r-process?)
- Pd 46% s-process (54% r-process some 'weak' r?)
- Ag 79% r-process ('weak' r?)
- Ba 81% main s-process (AGB stars)
- \bullet Eu 94% main r (Arlandini +1999)

¹Sneden 73, version 2010, Assuming LTE

Camilla, Juni Hansen

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Heidelberg University, ZAH

Sample, Method, and Formation Process:

- Sample consists of 71 stars, 42 dwarfs and 29 giants
- Enhanced as well as 'normal' stars $(-3.3 <$ [Fe/H] < -0.6)
- UVES and HIRES (high resolution data)
- MARCS 1D atmospheres & MOOG¹ synthetic spectrum code
- Element and formation process:
- Sr 85% s-process (weak s-process/ α -rich/p-rich)
- Y 92% s-process (weak s)
- Zr 83% s-process (less weak s)
- Mo 50% s-process (the remaining 50% is from $r+p$ -process)
- Ru 30% s-process (70% weak r-process?)
- Pd 46% s-process (54% r-process some 'weak' r?)
- Ag 79% r-process ('weak' r?)
- · Ba 81% main s-process (AGB stars)
- \bullet Eu 94% main r (Arlandini +1999)

¹Sneden 73, version 2010, Assuming LTE

Camilla, Juul Hansen

Heidelberg University, ZAH

r- and s-process elements (Arlandini+1999)

Camilla Juul Hansen

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Heidelberg University, ZAH

ARI ITA LSW QQ

Correlation - Anticorrelation

If two elements are created by the same process, they most likely If two elements are reated by the same pro
ess, they most likely grow in the same way (
orrelate).

Elements (38 $Z < 50$) are generally found to anti-correlate with

 $Z > 56$ elements (Burris et al, 2000, Montes et al, 2007, Francois et al 2007)

 Ω

Weak s-process elements - Sr (85%) and Y (92%) Arlandini et al 1999 Hansen et al. 2012

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW 290

Weak s-process and weak r-process/LEPP elements

Main s-process and main r-process elements - Ba (81%) and Eu $(94%)$

Hansen et al. 2012

 \leftarrow

ARI ITA LSW 290

Heidelberg University, ZAH

Camilla Juul Hansen

This is why silver is interesting:

Ag (and Pd) is produced by a second 'weak' r-process/LEPP

Camilla Juul Hansen

Observational Indications of Two Primary Processes Producing Elements from Sr to Eu

Heidelberg University, ZAH

Mo and Ru may also be created by this 'LEPP' process

Hansen et al. 2014

 \leftarrow

ARI ITA LSW 290

Heidelberg University, ZAH

Camilla Juul Hansen

The challenge: Deriving abundances from stars that are not enhanced in heavy elements.

High-quality observations are needed in the near-UV spectral range

- almost impossible with fibre-based instruments.

Camilla, Juni Hansen

Heidelberg University, ZAH

ARI ITA Ω

What can we learn about Mo and Ru? A more direct approach to test if two elements (A, B) correlate

Fitting the entire sample $= 1$ process creates it all..?

Large uncertainties and scatter found between Sr-Mo and Ag-Mo. Can this be improved by fitting two processes/contributions?

Camilla Juul Hansen

Heidelberg University, ZAH

Mo - weak s or LEPP? \rightarrow Not LEPP

Hansen et al, 2014

Camilla Juul Hansen

 \leftarrow \Box Ŕ 币

Camilla Juul Hansen

 $Ru - weak s$ or LEPP? \rightarrow LEPP!

Hansen et al, 2014

Camilla Juul Hansen

ARI ITA LSW 290 Þ

Heidelberg University, ZAH

4日下 Ŕ σ

Camilla Juul Hansen

Pure r-process yields (Hansen et al. 2012)

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW 290

Telescopes Abundances Applications Heavy elements 2. r-process Yields Meteorites Separating processes [Teles
opes](#page-7-0) [Abundan
es](#page-10-0) [Appli
ations](#page-18-0) Heavy [elements](#page-21-0) 2. [r-pro
ess](#page-25-0) [Yields](#page-37-0) [Meteorites](#page-45-0) [Separating](#page-53-0) pro
esses

r-poor vs r-rich stars: HD122563 & CS31082-001 r-poor vs r-ries vs

(Honda et al. 2006, Hill et al. 2002 & Hansen et al. 2012) (Honda et al, 2006, Hill et al, 2006, Hill et al, 2008, Hansen et al, 2012) \mathcal{A}

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW 290

- Ag, Pd, and Ru correlate they are produced by the same process (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process) and p-produced by the property of the product of the prod
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

4 0 8 4 @ \mathbf{p}

Heidelberg University, ZAH

Camilla Juul Hansen Camilla Juul Hansen Heidelberg University, ZAH

- Ag, Pd, and Ru correlate they are produced by the same pro
ess (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process) and p-produced by the property of the product of the prod
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

4 @

Camilla Juul Hansen Camilla Juul Hansen Heidelberg University, ZAH

- Ag, Pd, and Ru correlate they are produced by the same pro
ess (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metallicity) or Eu (94% main r-process element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-process) and p-produced by the property of the product of the prod
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

4 @

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same pro
ess (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metalli
ity) or Eu (94% main r-pro
ess element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-pro
ess)
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same pro
ess (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metalli
ity) or Eu (94% main r-pro
ess element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-pro
ess)
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

Camilla Juul Hansen

- Ag, Pd, and Ru correlate they are produced by the same pro
ess (LEPP/weak r/...)
- Ru+Ag do not correlate with weak s-process elements; Sr & Y
- Ru+Ag do not correlate with Ba (main s-process at solar metalli
ity) or Eu (94% main r-pro
ess element; Arlandini et al 1999)
- Mo is less weak r/LEPP and more weak+main s (some main r and p-pro
ess)
- $\bullet \rightarrow$ Mo is a very mixed element; it has more in common with the lighter than the heavy elements.

Heidelberg University, ZAH

Camilla Juul Hansen

Isotopic abundances needed \rightarrow presolar grains from meteorites?

Blue: ground based observations, green: spa
e, yellow: isotopi abundan
es

4 0 8 x 一句

Heidelberg University, ZAH

Camilla Juul Hansen Camilla Juul Hansen Heidelberg University, ZAH

Presolar grains: r-s-, and p-process contributions to Mo and Ru Presolar grains: r-,s-, and p-pro
ess ontributions to Mo and Ru

 $(Dauphas +2004)$ \sim \sim \sim \sim

Presolar grains can be enriched by only one AGB star. Anomalies in abundances can therefore indicate a heterogeneous gas which in turn means that the nebula/cloud was not uniformly mixed – or general variations of x Mo due to variations in the $contribution$ from process x to the gas...

Heidelberg University, ZAH

Camilla, Juni Hansen Camilla Juul Hansen Heidelberg University, ZAH

Anomalies - improved method!

The slope of these correlations match s-process predicted slopes The slope of these orrelations mat
h s-pro
ess predi
ted slopes (for bulk meteorites). Dauphas et al. 2004 (for bulk meteorites). Dauphas et al, 2004. Dauphas et al, 2004. Dauphas et al, 2004. Dauphas et al, 2004. Dauphas et al. 2004. Dauphas e

Dauphas et al therefore believe that the reason for anomalies is variations in the s-process (but cannot fully exclude r- and [p-](#page-47-0)[pr](#page-49-0)oc[es](#page-48-0)[s](#page-49-0) [d](#page-44-0)[e](#page-45-0)c[o](#page-53-0)[up](#page-44-0)[l](#page-45-0)[in](#page-52-0)[g](#page-53-0)) $\frac{1}{2}$ 290 Camilla Juul Hansen Heidelberg University, ZAH

Camilla Juul Hansen Heidelberg University, ZAH

Earth

- The Mo-Ru (cosmic) correlation reflects a mixing line between pure s and Solar composition. All meteorites follow this correlation.
- The Earth also follows this cosmic correlation this is quite interesting because:
- Ru is highly siderophile and therefore sinks into the core
- Mo is moderately siderophile and will stay in the mantle (like noble metals) \longrightarrow The same Mo-Ru correlation for meteorites would not a priori be expected for the Earth's mantle....
- Since the Mo-Ru correlation is true for the Earth's mantle, Ru must be delivered to the mantle after the core formed by a late accretion event which was of similar composition to the gas that first enriched the mantle in Mo.

Camilla Juul Hansen

Heidelberg University, ZAH

4 ロ ト 4 何 ト

Earth

- The Mo-Ru (cosmic) correlation reflects a mixing line between pure s and Solar composition. All meteorites follow this correlation.
- The Earth also follows this cosmic correlation this is quite interesting because:
- Ru is highly siderophile and therefore sinks into the core
- Mo is moderately siderophile and will stay in the mantle (like noble metals) \longrightarrow The same Mo-Ru correlation for meteorites would not a priori be expected for the Earth's mantle....
- Since the Mo-Ru correlation is true for the Earth's mantle, Ru must be delivered to the mantle after the core formed by a late accretion event which was of similar composition to the gas that first enriched the mantle in Mo.

Heidelberg University, ZAH

s-pro
ess in grains and stars

Solid symbols are stars, open symbols SiC grains Hansen et al, 2014, Pellin et al. 2006 Nicolussi et al. 1997 2006, Ni
olussi et al. 1997

 \leftarrow \Box

Heidelberg University, ZAH

ARI ITA LSW 290

Camilla Juul Hansen

Conclusion

- A second process is needed to explain Ag, Ru & Pd
- This second "LEPP" is different from the s-processes and the main r-process
- Mo is produced by all processes p.s. and r this is detectable
- Mo and Ru are important heavy elements as they can trace various formation processes and thereby provide information on the formation of stars, meteorites, and Earth.
- Two processes seem sufficient to explain the stellar abundances and their scatter within the uncertainty (0.32dex) - may be too large $=$ could hide other contributions
- Room for improvement:
	- \rightarrow 3D self-consistent SN models.
	- \rightarrow optimized yield predictions,
	- \rightarrow 3D+NLTE abundance corrections for heavy elements and
	- \rightarrow mixing processes in the ISM.

 Ω

4 0 8

Camilla Juul Hansen

Material for discussion: Observational indicators for formation processes -

- 1) Correlations
- 2) star-to-star abundance scatter
- 3) Abundance pattern from observations
- 4) Uncertainties
- 5) CEMP stars

Heidelberg University, ZAH

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW

 290

 \leftarrow \Box Ŕ 卢 ×

Þ

Heidelberg University, ZAH

Camilla Juul Hansen

From this sample we eliminate stars with:

- $[Fe/H] < -2.5$ removes most s-process contamination
- $[C/Fe] < 0.9$ removes most CEMP stars
- $[Ba/Fe] < 1.0$ removes CEMP-s and Ba-rich binaries
- Min. 5 abundance detections (i.e., not upper limits)
- $\left[\frac{C}{N}\right] < -0.4$ and $\left[\frac{N}{Fe}\right] > 0.5$ removes self-enriched stars

Heidelberg University, ZAH

Camilla, Juni Hansen

Assumptions:

There are 3 robust pro
esses:

r-pro
ess, LEPP, Pomponent. $M1$:

r=CS22892-052, LEPP=HD122563 M2: r=CS22892-052, $r+LEPP = HD122563$ r+LEPP = HD122563 M3: r+LEPP=CS22892-052. \mathcal{M} . The contract of th r+LEPP=HD122563 reading the leaders of the Leppen control of the Leppen control of the Leppen control of the Leppen control of

- all stars are mixed

Camilla Juul Hansen

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW 299

Camilla Juul Hansen

ARI ITA LSW 299

ă

Camilla Juul Hansen

ARI ITA LSW 290

Camilla Juul Hansen

ă

Camilla Juul Hansen

Two ways of deriving abundan
es:

- Equivalent width and synthetic spectra Equivalent width and syntheti spe
tra
- We need to know the stellar parameters: We need to know the stellar parameters: the stellar parameters: the stellar parameters: the stellar parameters Temperature, gravity, Temperature, gravity, metallicity and velocity (small scale) ity and velocity and
- Model atmosphere (e.g. MARCS) and synthetic spectrum code (e.g. MOOG)
- Assumptions: 1D, LTE -Assumptions: 1D, LTE one lo
al temperature, bla
k body radiation (Planck), Maxwellian velocity distribution, Boltzmann and Saha describe excitation and ionisation
- Line lists with atomic and molecular information (ex
itation potential and log gf)

Heidelberg University, ZAH

Temperature, gravity and metallicity

- . The color of a star depends on two factors: Temperature and metallicity
- Color (V-K) alibration: $T = a + b(V - K) + c(V - K)^{2} + d(V - K)[Fe/H] + ...$
- Ex
itation potential based on Fe lines (NLTE sensitive)
- Parallax/distance (π) : $log \frac{g}{g_{Sun}} = log \frac{M}{M_{Sun}} + 4 \frac{T}{T_{Sun}} + 0.4 V_o + 2 log(\pi) + corrections$

Heidelberg University, ZAH

- Ionisation equilibrium from Fe lines (NLTE sensitive)
- Metallicity ([Fe/H]) from equivalent widths of Fe lines

Camilla Juul Hansen Camilla Juul Hansen Heidelberg University, ZAH